Rings without a Gorenstein Analogue of the Govorov-lazard Theorem
نویسنده
چکیده
It was proved by Beligiannis and Krause that over certain Artin algebras, there are Gorenstein flat modules which are not direct limits of finitely generated Gorenstein projective modules. That is, these algebras have no Gorenstein analogue of the Govorov-Lazard Theorem. We show that, in fact, there is a large class of rings without such an analogue. Namely, let R be a commutative local noetherian ring. Then the analogue fails for R if it has a dualizing complex, is henselian, not Gorenstein, and has a finitely generated Gorenstein projective module which is not free. The proof is based on a theory of Gorenstein projective (pre)envelopes. We show, among other things, that the finitely generated Gorenstein projective modules form an enveloping class in mod R if and only if R is Gorenstein or has the property that each finitely generated Gorenstein projective module is free. This is analogous to a recent result on covers by Christensen, Piepmeyer, Striuli, and Takahashi, and their methods are an important input to our work.
منابع مشابه
Gorenstein homological dimensions with respect to a semi-dualizing module over group rings
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
متن کاملGENERALIZED GORENSTEIN DIMENSION OVER GROUP RINGS
Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.
متن کاملAN EXTENDED NOTION OF THE GRADE OF AN IDEAL, AND GORENSTEIN RINGS
In this paper we shall apply modules of generalized fractions to extend the notion of the grade of an ideal, and to obtain characterizations of Gorenstein rings.
متن کاملGorenstein hereditary rings with respect to a semidualizing module
Let $C$ be a semidualizing module. We first investigate the properties of finitely generated $G_C$-projective modules. Then, relative to $C$, we introduce and study the rings over which every submodule of a projective (flat) module is $G_C$-projective (flat), which we call $C$-Gorenstein (semi)hereditary rings. It is proved that every $C$-Gorenstein hereditary ring is both cohe...
متن کامل